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Comparison of the CRAY X-MP-4, 

Fujitsu VP.200, and Hitachi S-810/20: 

An Argonne Perspective* 

Jack J. Dongarra 

Mathematics and Computer Science Division 

Alan Hinds 

Computing Services 

Abstract 

A set of programs, gathered from major Argonne computer users, was run on the current generation 
of supercomputers: the CRAY X-MP-4. Fujitsu VP-200. and Hitachi S-810/20. The results show 
that a single processor of a CRAY X-MP-4 is a consistently strong performer over a wide range of 
problems. The Fujitsu and Hitachi excel on highly vectorized programs and offer an attractive 
opportunity to sites with IBM-compatible computers. 

1. Introduction 

Last year we ran a set of programs, gathered from major Argonne computer users, on the current 
generation of supercomputers: the CRAY X-MP-4 at CRAY Research in Mendota Heights. Minnesota; 
the Fujitsu VP-200 at the Fujitsu plant in Numazu. Japan; and the Hitachi S-810/20 at the Hitachi Ltd. 
Kanagawa Works in Kanagawa. Japan. 

2. Architectures 

The CRAY X-MP, Fujitsu VP, and Hitachi S/810 computers are all high-performance vector pro­
cessors that use pipeline techniques in both scalar and vector operations and provide parallelism among 
independent functional units. All three machines use a register-to-register format for instruction execu­
tion and are architecturally similar at a high level. Each machine has three vector load/store techniques 
— contiguous element, constant stride, and indirect address (index vector) modes. All three are optim­
ized for 64-bit floating-point arithmetic operations. There are, however, a number of major differences 
that should be noted. These are discussed below and summarized in Table 1 at the end of this section. 

2.1 CRAY X-MP 

The CRAY X-MP-4 is the largest of the family of CRAY X-MP computer models, which range 

in size from one to four processors and from one million to sixteen million words of central memory. 

The CRAY X-MP/48 computer consists of four identical pipelined processors, each with fully 

*Work supported in pan by the Applied Mathematical Sciences subprogram of the Office of Energy 
Research, U.S. Department of Energy, under ConUacl W-3l-109-Eng-38. 



segmented scalar and vector functional units with a 9.5-nanosecond clock cycle. All four processors 

share in common an 8-million word, high-speed (38-nanosecond cycle time) bipolar central memory, a 

common I/O subsystem, and an optional integrated solid-state storage device (SSD). Each processor 

contains a complete set of registers and functional units, and each processor can access all of the com­

mon memory, all of the I/O devices, and the single (optional) SSD. The four CPUs can process four 

separate and independent jobs, or they can be organized to work concurrently on a single job. The 

architecture of the CRAY X-MP/48 is depicted in Figure 1. 

This document will focus on the performance of only a single processor of the CRAY X-MP-4, 

as none of our benchmark programs were organized to take advantage of multiple processors. Thus, in 

the tables and text diat follow, all data on the capacity and the performance of the CRAY X-MP-4 

apply to a single processor, except for data on the size of memory and the configuration and perfor­

mance of I/O devices and the SSD. 

The CRAY X-MP-4 has extremely high floating-point performance for both scalar and vector 
applications and both short and long vector lengdis. Each CRAY X-MP-4 processor has a maximum 
theoretical floating-point result rate of 210 MFLOPS (millions of floating point operations per second) 
for overlapped vector multiply and add instructions. With the optional solid-state storage device 
installed, the CRAY X-MP-4 has an input/output bandwidth of over 2.4 billion bytes per second, the 
largest in this study; without die SSD, the I/O bandwidth is 424 million bytes per second, of which 68 
million bytes per second is attainable by disk I/O. The CRAY permits a maximum of four disk dev­
ices on each of eight disk control units, the smallest disk subsystem in this study. 

The cooling system for the CRAY X-MP-4 is refrigerated liquid freon. 

The CRAY X-MP-4 operates with the CRAY Operating System (COS), a batch operating system 
designed to attach by a high-speed channel or hyperchannel interface with a large variety of self-
contained, general-purpose front-end computers. All computing tasks odier than batch compiling, link­
ing, and executing of application programs must be performed on the front-end computer. Alterna­
tively, the CRAY X-MP-4 can operate under CTSS (CRAY Time-Sharing System, available from 
Lawrence Livermore National Laboratory), a full-featured interactive system with background batch 
computing. The primary programming languages for the CRAY X-MP are Fortran 77 and CAL 
(CRAY Assembly Language); the Pascal and C programming languages are also available. 



CVailMHilCVtiMt 
(MC«»t X - M ^ / 0 

CPU 2 

CPU3 

CPU 4 

• 4 - » l t 
r««t Hfli« ctocfe 

Ctntrol 
mtmory 

l-tM 

UCOCO 

CPU1 

V r«9l«t«ra 
• r«9l«t«r» 
• 4 M-fel* 
• l»M«Mt »tff 
r««l«t«r 

^ 

T r««ltl»rt 
• 4 M - M t 
r«flflt«r» 

0 r«oltt«ft 
• 4 2 4 - k l i 
r t | l t1«r« 

Intfrvctlon 
ft«fr«ri 
4 kvTfdrt 
( f t i t l « -» l l 
lmlr«cll*« 
»«rc«U) 

lA) tectlon 

' 

V«ef«f n t tb 

Vtcf*r kHfltH 
| r - f t i t t ) 

c i *e l (S2-MM) 

i r t f U t t f t 
• M - k i i 

A r t9 l t t«r i 
• 24-blt 
rtfttldra 

, . ^ ^ ^ / c o i i i f o l \ 
\ ( td ell M c t l e m ) / 

V«cier fMACtlonal 
•ni t t 
Add/tyMroef 
Shift 
LOflc«l (2) 
P99mWi9it 
(•4-blt •rlthm«tlc) 

n»«fliif ^Inf 
f«HCtloii«l o i t t 
AM/tvMroct 
M«l*l»ly 
RbClprocot 

( M - b H artthm^flc) 

Scolar fvMctlonol 
•niti 
Add/iubtract 
LOflcal 
Shiff 
Ptp«lo11en/LZ 
(ft4-blt oflthmttlc) 

Addrttt 
funetlofiol units 
Add/tttbtrocf 
Multiply 
(24-blt aritliffittlc) 

Vtctor 
toctlon 

ScolQr 
ttction 

Addrttt 
ttetiofi 

Initractlon 
ttction 

Figure 1 

CRAY X-MP/48 Architecture 



2.2 Fujitsu VP-200 (Amdahl 1200) 

The Fujitsu VP-200 is midway in performance in a family of four Fujitsu VP computers, whose 

performance levels range to over a billion floating-point operations per second. In North America, the 

Fujitsu VP-200 is marketed and maintained by the Amdahl Corporation as the Amdahl 1200 Vector 

Processor. Although we benchmarked the VP-200 in Japan, the comparisons in this document will 

emphasize the configurations of die VP-200 offered by Amdahl in die United States. 

The Fujitsu VP-200 is a high-speed, single-processor computer, with up to 32 million words of 

fast (60-nanosecond cycle time) static MOS central memory. The VP-200 has separate scalar (15-

nanosecond clock cycle) and vector (7.5-nanosecond clock cycle) execution units, which can execute 

instructions concurrendy. A unique characteristic of die VP-200 vector unit is its large (8192-word) 

vector register set, which can be dynamically configured into different numbers and lengths of vector 

registers. The VP-200 architecture is depicted in Figure 2. 

The VP-200 has a maximum tiieoretical floating point result rate of 533 MFLOPS for overlapped 

vector multiply and add instructions. 

The VP-200 system is cooled entirely by forced air. 

The Fujitsu VP-200 scalar instruction set and data formats are fully compatible with the IBM 370 

instruction set and data formats; the VP-200 can execute load modules and share load libraries and 

datasets that have been prepared on IBM-compatible computers. The Fujitsu VP-200 uses IBM-

compatible I/O charmels and can attach all IBM-compatible disk and tape devices and share these dev­

ices with odier IBM-compatible mainframe computers. Fujitsu does not offer an integrated solid-state 

storage device for the VP computer series, but any such device that attaches to an IBM channel and 

emulates an IBM disk device can be attached to the VP-200. The total I/O bandwiddi of die VP-200 

is 96 million bytes per second, the smallest in this study. The VP-100 can attach over one thousand 

disks; up to 93 million bytes per second can be used for disk I/O. 

The Fujitsu VP-200 operates widi die FACOM VP control program (also called VSP — Vector 

Processor System Program — by Amdahl), a batch operating system designed to interface with an 

IBM-compatible front-end computer via a channel-to-channel (CTC) adaptor in a tightiy coupled or 

loosely coupled network. The front-end computer operating system may be Fujitsu's OS-IV (available 

only in Japan) or IBM's MVS, MVS/XA, or VM/CMS. To optimize use of die VP vector hardware, 

Fujitsu encourages VP users to perform all computing tasks, other than executing their Fortran applica­

tion programs, on the front-end computer. 



Motk Ragittert 
I KB 

Moirt 
Storog* 

ZX MB 

Channel) 

Lood/ 
Store 

Lood/ 
Store 

Vector 
Regitftrt 

64KB 

64KB 

Buffer 
Storoge 

Motk 1 

Add/Logicol 

' 

Multiply 

Divide 

J 
- ] 

1 
1 

GPR 
FLPR 

Scolor 
Execution 
Unit 

Vector Unit 

Scolor Unit 

Figure 2 
Fujitsu VP-200 Architecture 



Of the three machines in this study, Fujitsu (Amdahl) provides the most powerful set of optimiz­

ing and debugging tools, all of which run on the front-end computer system. The only programming 

language diat takes advantage of die Fujitsu VP vector capability is Fujitsu Fortran 77/VP, although 

object code produced by any other compiler or assembler available for IBM scalar mainframe comput­

ers will execute correctiy on die VP in scalar mode. 

2.3 Hitachi S-810/20 

The Hitachi S-810/20 computer is the more powerful of two Hitachi S-810 computers, which 

currently are sold only in Japan. Very litde is published in English about the Hitachi S-810 computers; 

consequendy, some data in die tables and comparisons are inferred and may be inaccurate. 

The Hitachi S-810/20 is a high-speed, single-processor computer, widi up to 32 million words of 

fast (70-nanosecond bank cycle time) static MOS central memory and up to 128 million words of 

extended storage. The computer has separate scalar (28-nanosecond clock cycle) and vector (14-

nanosecond clock cycle) execution units, which can execute instructions concurrendy. The scalar exe­

cution unit is distinguished by its large (32 thousand words) cache memory. The S-810/20 vector unit 

has 8192 words of vector registers, and the largest number of vector functional units and the most 

comprehensive vector macro instruction set of the three machines in this study. The Hitachi S-810 

family has die unique ability to process vectors that are longer than their vector registers, entirely 

under hardware control. The architecture is shown in Figure 3. 

The Hitachi S-810/20 has a maximum theoretical floating point result rate of 840 MFLOPS for 

overlapped vector multiply and add instructions (four multiply and eight add results per cycle). 

The S-810/20 computer is cooled by forced air across a closed, circulating water radiator. 

Like the Fujitsu VP, the Hitachi S-810/20 scalar instruction set and data formats are fully compa­

tible widi the IBM 370 instruction set and data formats; the S-810/20 can execute load modules and 

share load libraries and datasets that have been prepared on IBM-compatible computers. The Hitachi 

S-810/20 uses IBM-compatible I/O channels and can attach all IBM-compatible disk and tape devices 

and share diese devices with other IBM-compatible mainframe computers. Hitachi's optional, extended 

storage offers extremely high performance I/O. With the extended storage installed, the Hitachi S-

810/20 has an I/O bandwith of 1.1 billion bytes per second; witiiout extended storage die I/O 

bandwidth is 96 million bytes per second. Up to 93 million bytes per second can be used for disk I/O. 

The Hitachi can attach over one thousand disk devices. 
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Hitachi S-810/10 Architecture 

The Hitachi S-810/20 operates with either a batch operating system designed to interface with an 
IBM-compatible front-end computer via a channel-to-channel (CTC) adaptor in a loosely coupled net­
work, or a stand-alone operating system with MVS-like batch and MVS/TSO-like interactive capabili­
ties. The primary programming languages for the Hitachi S-810 computers are Fortran 77 and assem­
bly language, although object code produced by any assembler or compiler available for IBM-
compatible computers will also execute on the S-810 computers in scalar mode. 
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3. Comparison of Computers 

In diis section, we compare die IBM compatibility of the Fujitsu and Hitachi computers and dis­

cuss the similarities and differences between the Fujitsu, Hitachi, and CRAY X-MP-4 computers widi 

regard to main storage, memory address architecture, memory, I/O, and vector and scalar processing 

performance, 

3.1 IBM Compatibility of the Fujitsu and Hitachi Machines 

Bodi Japanese computers run the full IBM System 370 scalar instruction set. The Japanese 

operating systems simulate IBM MVS system functions at die SVC level. MVS load modules created 

on Argonne's IBM 3033 ran correctiy on both die Fujitsu and Hitachi machines in scalar mode. 

The Japanese computers can share datasets on direct-access I/O equipment with IBM-compatible 

front-end machines. Codes can be developed and debugged on the front end with die user's favorite 

tools, then recompiled and executed on the vector processor. All software tools for the vector proces­

sor will run on the front end. Currentiy the software tools are MVS TSO/SPF oriented. 

The Japanese Fortran compilers are compatible with IBM VS/Fortran. 

3.2 Main Storage Characteristics 

The main storage characteristics of the three machines in this study are compared in Table 2. All 

three machines have large, interleaved main memories, optimized for 64-bit-word data transfers, with 

bandwidths matched to the requirements of their respective vector units. Each machine permits vector 

accesses from contiguous, constant-stride separated, and scattered (using indirect list-vectors) memory 

addresses. All three machines use similar memory error-detection and error-correction schemes. The 

text diat follows concentrates on those differences in main memory that have significant performance 

implications. 

The CRAY X-MP-48 uses extremely fast bipolar memory, while the Fujitsu and Hitachi comput­

ers use relatively slower static-MOS memory (see Table 2). CRAY'S choice of die faster but much 

more expensive bipolar memory is largely dictated by the need to service four processors from a sin­

gle, symmetrically shared main memory. Fujitsu and Hitachi selected static MOS for its relatively 

lower cost and lower heat dissipation. These MOS characteristics permit much larger memory 

configurations widiout drastic cost and cooling penalties. Fujitsu and Hitachi compensate for die rela­

tively slower speed of dieir MOS memory by providing much higher levels of memory banking and 

interleaving. 



Table I 

Overview of Machine Characteristics 

Chsracicn&tK CRAY X-MP-4 Fujiuu Vp-200 Miuchi S 81020 

Number of Proccsson 

Machine Cycle Time 9.5 ns vector 

9.5 nt scelar 

7.5 ns vector 

15 ns scalar 

14 ns vector 

28 ni scalar 

Memory Addressing Real Mod. Virtual Mod Vinual 

Maximum Memor> Size 16 Mwords 32 Mwofda 32 Mwords 

Opuooal SSD Memory 32: 128 Mwords Not Available 32; 64; 128 Mwords 

SSD Tnnsfcr Rate 256 Mwords/s Not Available 128 Mwords/s 

VO-Manory Bandwidth 50 Mwords/i 12 Mwords/s 12 Mwords/s 

(numbere below arc 

per processor) 

CPU Memory Bandwidth 315 Mwords/s 533 Mwords/s 560 Mwords/s 

ScaUr BufTer Memory 64 Words T reg 8192 Words Cache 32768 Words Cache 

Vector Registers 512 Words 8192 Words 8192 Words 

Vector Pipehnes: 

Load/Store Pipes 2 Load: 1 Store 2 Load/Store 

Floaung Point M A A 1 Mult; 1 Add; 1 Mult; 1 Add 

3 Load; 1 Load/Store 

2 Add; 2 Mult/Add 

Peak Vector (M • A) 210 MFLOPS 533 MFLOPS 840 MFLOPS 

Cooling System Type Freon Forced Air Air and Radiator 
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Characteristic CRAY X-MP-4 Fujitsu VP-200 Hitachi S-810/20 

Operating Systems CRAY-OS (batch) 

CTSS (interactive) 

VSP (batch) HAP OS 

Front Ends IBM, CDC, DEC, 

Data General, 

Univac, Apollo, 

Honeywell 

IBM-compatible IBM-compatible 

Vectorizing Languages Fortran 77 Fortran 77 Fortran 77 

Other High-Level 

Languages Pascal, C, LISP Any IBM-compat. Any IBM-compat. 

Vectorizing Tools Fortran Compiler Fortran Compiler Fortran Compiler 

FORTUNE VECTIZER 

Interact. Vectorizer 

3.3 Memory Address Architecture 

3.3.1 Memory Address Word and Address Space 

The CRAY X-MP uses a 24-bit address, which it interprets as a 16-bit "parcel" address when 
referencing instructions and as a 64-bit-word address when referencing operands. This addressing 
duality leads to a 4-million-word address space for instructions and a 16-million-word address space 
for operands. 

The Japanese machines use similar memory addressing schemes, owing to their mutual commit­
ment to IBM compatibility. The two Japanese computers allow operating-system selection of IBM 
370-compatible 24-bit addressing or IBM XA-compatible 31-bit addressing. These addressing alterna­
tives provide a 2-million-word address space or a 256-million-word address space, respectively. The 
address space is identical for both program instructions and operands. 
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Table 2 

Main Storage Characteristics 

Memory hem 

Memory Type 

Addressing: 

Paged 

Addreu Word 

Addrcu Space 

Addreu Boundary: 

Instructions 

Scalar Dau 

Vector Dau 

Vector Addressing 

Modes 

Memory Size 

Interleave 

Cycle Time: 

Section 

Bank 

Acceu Time: 

ScaUr 

Vector 

Umu 

SECDED 

Type 

Biu 

Mwords 

Bit 

Bit 

Bit 

Mwords 

Mbytes 

Sections 

Ways 

CP- ns 

CP - ns 

C P - n i 

CP-ns 

CRAY X.MP'4 

16K-bil Bipolar 

Extended Real 

No 

24 

4(inst): 16(dau) 

16 

64 

64 

Contiguous 

ConsUnt Stride 

Indirect Index 

8: 16 

64; 128 

4; 4 

64; 64 

ICP - 9 5 ns 

4CP . 38 ns 

I4CP - 133 ns 

I7CP - 162 ns 

Fujitfu VP-200 

64K-bil S MOS 

Mod. Virtual 

System Only 

24 or 31 

2; 256 

16 

8 

32; 64 

Contiguous 

ConsUnt Stride 

Indirect Index 

8; 16; 32 

64; 128; 256 

8; 8; 8 

128; 256; 256 

2CP- 15 ns 

8CP-60ns 

From Cache 

2CP - 15 n$ 

7 

Ihi^chi s-810/20 

64Kb i lSMOS 

Mod Vinual 

System Only 

24 or 31 

2; 256 

16 

8 

32; 64 

Contiguous 

ConsUnt Stride 

Indirect Index 

4; 8; 16; 32 

32; 64; 128; 256 

8 

128 

ICP - 14 ns 

5CP - 70 ns 

From Cache 

2CP . 28 ns 

7 
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Memory Item 

Transfer Rate: 

Scalar VS 

Inst. Fetch 

Vect. Load 

Vect. Store 

Vect. ToUl 

VO 

Vector Bandwidth: 

u s Pipes 

# Sectors 

Vector Bandwidth: 

Max. Load 

Max. Store 

ToUl L/S 

Scalar Buffer Memory: 

Size 

Block Load 

Access Time 

Trans. Rate 

Instmction Buffer: 

Block Load 

Units 

Words/CP 

Words/CP 

Words/CP 

Words/CP 

Words/CP 

Words/CP 

Pipes 

Sectors 

Stride 

Mwords/s 

Mwords/s 

Mwords/s 

Words 

Words/CP 

CP-ns 

Words/CP 

Words/CP 

CRAY X-MP-4 

(per CPU) 

lW/19. ns 

8W/9.5 ns 

2W/9.5 ns 

lW/9.5 ns 

3W/9.5 ns 

lW/9.5 ns 

(per CPU) 

2 Load; 1 Store 

one; odd; even 

210; 210; 210 

105; 105; 105 

315; 315; 315 

T Registers 

64 T 

lW/9.5 ns 

ICP - 9.5 ns 

lW/9.5 ns 

128 Words I-slack 

8W/9.5 ns 

Fujitsu VP-200 

2W/15 ns 

2W/15 ns 

8W/15 ns 

8W/15 ns 

8W/15 ns 

? 

2 Load/Store 

X 2 Sectors 

one; odd; even 

533; 266; 133 

533; 266; 133 

533; 266; 133 

Cache Memory 

8192 

8W/60 ns 

2CP - 15 ns 

2W/15 ns 

Cache Memory 

8W/60 ns 

HiUchi S-810/2U 

2W/14 ns 

lW/14 ns 

8W/14 ns 

2W/14 ns 

8W/14 ns 

lW/14 ns 

3 Load; 1 Load/Store 

X 2 Sectors 

one; odd; even 

560; 560; 560 

140; 140; 140 

560; 560; 560 

Cache Memory 

32768 

8W/70 ns 

2CP - 28 ns 

2W/28 ns 

Cache Memory 

8W/70 ns 

3.3.2 Operand Sizes and Operand Memory Boundary Alignment 

CRAY X-MP computers have only two hardware operand sizes: 64-bit integer, real, and logical 
operands; and 24-bit integer operands, used primarily for addressing. All CRAY operands are stored 
in memory on 64-bit word boundaries. CRAY program instructions consist of one or two 16-bit "par­
cels," packed four to a word. CRAY instructions are fetched from memory, 32 parcels at a time 
beginning on an 8-word memory boundary, into an instruction buffer that in turn is addressable on 16-
bit parcel boundaries. 
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The Japanese compucers provide all of the IBM 370 architecture's operand types and lengths, and 

some additional ones. The Fujitsu and Hitachi scalar insiruclion sets can process 8-bit. 16-bit, 32-bit, 

64-bil, and 128-bil binary-arithmetic and logical operands; 8-bil to 128-bit (in units of 8 bits) decimal-

arithmetic operands; and 8-bii to 32768-bit (in units of 8 bits) character operands. Scalar operands 

may be aligned in memory on any 8-bii boundary. However, the Fujitsu and Hitachi vector instruction 

sets can process only 32bil and 64-bil binary-arithmetic and logical operands, and these operands must 

be aligned in memory on 32-bit and 64-bil boundaries, respectively. Most of the Fijitsu and Hitachi 

incomptitibilities with IBM Fortran programs arise from vector operand misalignment in COMMON 

blocks and EQUIVALENCE statements. 

3 J J Memory Regions and Program Relocation 

TT)e CRAY X-MP uses only real memory addresses. The operating system loads each program 

into a contiguous region of memory for instructions and a contiguous region of memory for operands. 

The CRAY X-MP uses two base registers to relocate all addresses in a program; one register uni­

formly biases all instruction addresses, and the second register uniformly biases all operand addresses. 

In contrast, the Fujitsu and Hitachi computers use a modified virtual-memory addressing scheme. 

The operating systems and user application programs are each loaded into a contiguous region of "vir­

tual" memory, aldiough each may actually occupy noncontiguous "pages" of real memory. Every vir­

tual address reference must undergo dynamic address translation to obtain the corresponding real 

memory address. As in conventional virtual-memory systems, operating-system pages can be paged 

out to an external device, allowing the virtual-memory space to exceed the underlying real-memory 

space. However, user application program pages are never paged out. Application program address 

translation is used primarily to avoid memory fragmentation. 

3J.4 Main Memory Size Limitations 

The CRAY X-MP is available with up to 16 million words of main memory, the maximum per­

mitted by its address space. This is restrictive compared to the Japanese offerings, especially as the 

memory must be shared by four processors. Currently, the Fujitsu and Hitachi computers offer a max­

imum of 32 million words of main memory. However, both Japanese computers could accommodate 

expansion to 256 million words (per program) within the current 31-bit virtual-addressing architecture. 
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3.4 Memory Performance 

3.4.1 Memory Bank Structure 

The computers on which we ran the benchmark problems were all equipped widi 8 million words 

of main memory. The CRAY X-MP-48 memory is divided into 64 independent memory banks, organ­

ized as 4 sections of 16 banks each. Bodi die Fujitsu and Hitachi computer memories are divided into 

128 independent memory banks organized as 8 sections of 16 banks each; Fujitsu memories larger dian 

8 million words have 256 memory banks in 8 sections. In general, die larger numbers of memory 

banks permit higher bandwidths for consecutive block memory transfers and fewer bank conflicts from 

random memory accesses. 

3.4.2 Instruction Access 

The CRAY X-MP has four 32-word instruction buffers that can deliver a new instruction for exe­

cution on every clock cycle, leaving the full memory bandwidth avadable for operand access. Each 

buffer contains 128 consecutive parcels of program instructions, but the separate buffers need not be 

from contiguous memory segments. Looping and branching within the buffers are permitted; entire 

Fortran DO loops and small subroutines can be completely contained in the buffer. An instruction 

buffer is block-loaded from memory, 32 words at a time, at the rate of 8 words per 9.5-nanosecond 

cycle. 

The Fujitsu and Hitachi processors buffer all instruction fetches dirough their respective cache 

memories (see "Scalar Memory Access" below). The cache bandwidths are adequate to deliver 

instructions and scalar operands without conflict. 

3.4.3 Scalar Memory Access 

The CRAY X-MP does not have a scalar cache. Instead, it has 64 24-bit intermediate-address 

B-registers and 64 64-bit intermediate-scalar T-registers. These registers are under program control 

and can deliver one operand per 9.5-nanosecond clock cycle to the primary scalar registers. The user 

must plan a program carefully to make effective use of die B and T registers in CRAY Fortran; vari­

ables assigned to B and T registers by the compiler are never stored in memory. 

The Fujitsu VP-200 and Hitachi S-810/20 automatically buffer all scalar memory accesses and 

instruction fetches through fast cache memories of 8192 words and 32768 words, respectively. The 

Fujitsu and Hitachi cache memories can each deliver two words per scalar clock cycle (15 nanoseconds 

and 28 nanoseconds, respectively) to dieir respective scalar execution units, entirely under hardware 

control. 
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3.4.4 Vector Memory Access 

The computers studied all have multiple daia-strcaming pipelines to transfer operands between 
main memory and vector registers, l-ach processor of a CRAY X-MP has three pipelines two dedi­
cated to loads and one dedicated to stores - between its own set of vector registers and die shared 
main memory. (A fourdi pipe in each X-MP processor is dedicated to I/O data transfers.) The Fujitsu 
VP-2(X) has two memory pipelines, each capable of bodi loads and stores. The Hitachi S-810/20 has 
four memory pipelines — three dedicated to loads and one capable of bodi loads and stores. 

Each CRAY X-MP pipe can transfer one 64-bit word between main storage and a vector register 
each 9.5-nanosecond cycle, giving a single-processor memory bandwidth (excluding I/O) of 315 mil­
lion words per second and a four-processor memory bandwiddi of 1260 million words per second. 
The Fujitsu and Hitachi pipes can each transfer two 64-bit words each memory cycle (7.5 nanoseconds 
and 14 nanoseconds, respectively), giving total memory bandwiddis of 533 and 560 million words per 
second, respectively. 

For indirect-address operations (scaner/gatfier) and for constant strides different from one. the 
Fujitsu computer devotes one of its memory pipelines to generating operand addresses; its maximum 
memory-io-vector register bandwidth is 266 million words per second for scatter/gather and odd-
number constant strides, and 133 million words per second for even-number constant strides. 

All three machines can automatically "chain" their load and store pipelines with their vector func­
tional pipelines. Thus, vector instructions need not wait for a vector load to complete, but can begin 
execution as soon as the first vector element arrives from memory. And vector stores can begin as 
soon as the first result is available in a vector register. In the limit, pipelines can be chained to create 
a continuous flow of operands from memory, through the vector functional unit(s). and back to 
memory with an unbroken stream of finished results. In diis "memory-to-memory" processing mode, 
die vector registers serve as litde more than buffers between memory and the functional units. The 
CRAY X-MP*s three memory pipes permit memory-to-memory operation with two input operand 
streams and one result stream. With only two memory pipes, the Fujitsu VP-200 can function in 
memory-to-memory mode only if one of the input operands is already in a vector register, or if one of 
the operands is a scalar, and not at all if the vector stride is different from one. The Hitachi, with four 
memory pipes, can function in memory-to-memory mode with up to three input operand streams and 
one result stream; add to this the Hiuchi's ability to automatically process vectors that are longer than 
its vector registers, and die Hitachi can be viewed as a formidable memory-to-memory processor. 
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3.5 Input/Output Performance 

Table 3 summarizes the input/output features and performance of the CRAY X-MP, the Fujitsu, 

and the Hitachi. This information is entirely from the manufacturers' published machine specifications; 

no I/O performance comparisons were included in our tests. 

Bodi die CRAY and Hitachi I/O subsystems have optional integrated solid-state storage devices, 

with data transfer rates of 2048 and 1024 Mbytes per second, respectively, over specialized channels. 

The I/O bandwiddi of one of tiiese devices dwarfs the I/O bandwidth of the entire disk I/O subsystem 

on each machine. The Fujitsu computers can attach only those solid-state storage devices diat emulate 

standard IBM disk and drum devices over standard Fujitsu 3-Mbyte-per-second channels. 

The IBM-compatible disk I/O subsystems on die two Japanese computers have a much larger 

aggregate disk storage capacity than die CRAY. The CRAY can attach a maximum of 32 disk units, 

while Fujitsu and Hitachi can each attach over one thousand disks. CRAY permits a maximum of 8 

concurrent disk data transfers, while Fujitsu and Hitachi permit as many concurrent disk data transfers 

as diere are channels (up to 31; at least one channel is required for front-end communication). Indivi­

dually, CRAY'S DD-49 disks can transfer data sequentially at the rate of 10 Mbytes per second, com­

pared with only 3 Mbytes per second for the IBM 3380-compatible disks used by Fujitsu and Hitachi. 

But the maximum concurrent CRAY disk data rate (four DD-49 data streams on each of two I/O pro­

cessors) is only 68 Mbytes per second, compared with 93 Mbytes per second for the two Japanese 

computers. The disks used on all three computers should have very similar random access perfor­

mance, which is dominated by access time rather than data transfer rate. 

CRAY includes up to 8 Mwords of I/O subsystem buffer memory between its CPUs and its disk 

units. This I/O buffer memory permits 100-Mbyte-per-second data transfer between the I/O subsystem 

and a single CRAY CPU. The IBM 3880-compatible disk controllers used by the two Japanese 

machines permit up to 2 Mwords of cache buffer memory on each controller. This disk controller 

cache does not increase peak data transfer rates but serves to reduce average record access times. 
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Table 3 

Input/Output Features and Performance 

I/O Features 

Disk I/O Channels: 

Disk I/O Proccsson 

Channels per lOP 

Maximum Channels 

Dau Rate Channel 

ToUl Bandwidth 

Disk Controllers: 

Max. per Channel 

Max. Controllers 

Disks/Controller 

Dau PathyConirollcr 

Bandwidth/Controller 

Disk Devices: 

Storage Capacity 

Dau Transfer Rate 

Average Seek Time 

Average Latency 

Maximum Striping 

Max. Disk Bandwidth 

Integrated SSD: 

Capacity (Mwords) 

Dau Transfer Rale 

CRAY X MP4 

2 1 C) Subsystems 

1 

2 

too MB/s 

200 MB/s 

DCU-5 

4 

8 

4 

1 

12 MB/s 

DD-39; DD^9 

1200 MB; 1200 MB 

6 MB/s; 10 MB/s 

18 ms; 16 ms 

11 ms; '' 

5; 3 

45 MB/s; 68 MB/s 

Optional 

32; 64; 128 

256 Mwords/s 

Fujitsu VP-200 

2 I/O Directors 

16 

32 

3 MB/s 

96 MB/s 

6880 

8 

128 

4-64 

2 

6 MB/s 

6380 

600 MB; 1200 MB 

3 MB/s 

15 ms 

8 ms 

24 

93 MB/s 

Not Available 

lliuchi S-810/20 

2 I/O Directors 

16 

32 

3 MB/s 

96 MB/s 

3880-equivalcnt 

16 

256 

4-16 

2 

6 MB/s 

3380-cquivalent 

600 MB; 1200 MB 

3 MB/s 

15 ms 

8 ms 

7 

93 MB/s 

Optional 

32; 64; 128 

128 Mwords/s 
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All three machines permit "disk striping" to increase I/O performance — the data blocks of a sin­

gle file can be interleaved over multiple disk devices to allow concurrent data transfer for a single file. 

CRAY allows certain disks to be designated as striping volumes at the system level; striped and non-

striped datasets may not reside on the same disk volume. A single CRAY file may be sn-iped over a 

maximum of three DD-49 or five DD-39 disk units. Fujitsu and Hitachi permit striping on a dataset 

basis; striped and non-striped datasets may reside on the same disk volume. A single Fujitsu dataset 

may be striped over as many as 24 disk volumes. 

3,6 Vector Processing Performance 

Table 4 shows the vector architectures of die three computers studied. All three machines are 

vector register based, with multiple pipelines connecting the vector registers with main memory. All 

three have multiple vector functional units, permit concurrency among independent vector functional 

units and with the load/store pipelines, and permit flexible chaining of the vector functional units with 

each other and with die load/store pipelines. Although Fujitsu and Hitachi permit both 32-bit and 64-

bit vector operands, all vector arithmetic on all three machines is performed in and optimized for 64-bit 

floating point. The diree vector units differ primarily in die numbers and lengths of vector registers, 

the numbers of vector functional units, and the types of vector instructions. 

Of the three machines, the CRAY has the smallest number and size of vector registers. Each 

CRAY X-MP processing unit has 8 vector registers of 64 elements, while die Fujitsu and Hitachi com­

puters each have 8192-word vector register sets. The Fujitsu vector registers can be dynamically 

configured into different numbers and lengths of vector registers (see Table 4), ranging from a 

minimum of 8 registers of 1024 words each to a maximum of 256 registers of 32 words each. The 

Fujitsu Fortran compiler uses the vector-length information available at compile time to try to optimize 

the vector register configurations for each loop. The Hitachi has 32 vector registers, fixed at 256 ele­

ments each, but with the unique ability to process longer vectors without the user or the compiler 

dividing them into sections of 256 elements or less; the Hitachi hardware can automatically repeat a 

long vector instruction for successive vector segments. The HAP Fortran compiler decides when to 

divide vectors into 256-element segments and when to process entire vectors all at once, based on 

whether intermediate results in a vector register can be used in later operations. 
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Table 4 

Vector Archilcciurc 

Vector Processing lum CRAY X MP 4 Fujitsu VP-200 HiUchi S 8I(V20 

Vector Rcgivicni 

Confipunlion 

ToUl Captcity 

Number x Size 

Misk Registers 

Vector Pipcl incs 

Load'Slore 

Floating Point 

Other 

Maximum Vccinr Result Rales 

(64-bit resulu): 

Floaung Poini Mull. 

Roaung Point Add 

Floating Point Ehvide 

Floating Mult Sc Add 

Vector OaU Types: 

Floating Point 

Fixed Point 

Logical 

Veaor Macro Instructions: 

Masked Anthmeuc 

Vector Compress/Expand 

Vector Merge under Mavk 

Vector Sum (S-S+Vi) 

Fixed 

512 Words/CPU 

8x64 Words 

64 Biu 

(per CPIO 

2 Lxnd; 1 Store 

1 Mull; 1 Add; 

1 Recip. Approx. 

1 Shift; 1 Mask 

2 Laical 

105 MFLOPS 

105 MFLOPS 

33 MFLOPS 

210 MFLOPS 

M b i t 

64-bit 

64-bit 

No 

Yes 

Yc« 

No 

Reconfigunble 

8192 Words 

8x1024 Words 

16x512 Words 

32x256 Words 

64x128 Words 

l28xM Words 

256x32 Words 

8192 Biu 

2 Load'Storc 

1 Mult. 1 Add 

1 Divide 

1 Mask 

267 MFLOPS 

267 MFLOPS 

56 MFLOPS 

533 MFLOPS 

32-bil. 64 bit 

32-bit 

1 bit; 64-bit 

Yes 

Yes 

No 

Yci 

Fixed 

8192 Words 

32x256 Words 

8x256 Words 

3 l,oad;l L^oad/Store 

2 Add/Shift/Logic 

1 Mull/Dividc/Add 

1 Mult/Add 

1 Mask 

280 MFLOPS 

560 MFLOPS 

70 MFLOPS 

560 MFLOPS 

840 (M+2A) 

32-bit; 64-bil 

32-bit 

64-bil 

Yes 

Yes 

No 

Yes 
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Vector Processing Item 

Vector Macro Instructions: 

Vector Prod (S=S*Vi) 

DOT Product (S=S+Vi*Vj) 

DAXPY (Vi=Vi-t-S*Xi) 

Iteration (Aj=Ai*Bi-t-Ci) 

Max/Min (S=MAX(S,Vi)) 

Fix/Float (Vi=Ii;Ii=Vi) 

CRAY X-MP-4 

No 

No 

Chain 

No 

No 

Chain 

Fujitsu VP-200 

No 

Chain 

Chain 

No 

Yes 

Yes 

Hitachi S-810/20 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

The Hitachi has more vector arithmetic pipelines dian the CRAY and Fujitsu computers. These 

pipelines permit the Hitachi to achieve higher peak levels of concurrency than CRAY and Fujitsu. 

Depending on the operation mix, the Hitachi can drive two vector add and two vector multiply+add 

pipelines concurrendy, for an instantaneous result rate of 840 MFLOPS. If die program operation mix 

is inappropriate, however, the extra pipelines are just expensive unused hardware. The HAP Fortran 

"pair-processing" option often increases performance by dividing a vector in two and processing each 

half concurrendy through a separate pipe. For long vectors, pair-processing can double the result rate; 

but for short vectors, startup overhead can result in reduced performance. The HAP Fortran compiler 

pemits pair-processing to be selected on a program-wide, subroutine-wide, or individual loop basis. 

The Fujitsu and Hitachi computers have larger and more powerful vector instruction sets than the 

CRAY. These macro instruction sets make these machines more "compilable" and more "vectorizable" 

than the CRAY. Especially valuable are the macro instructions that reduce an entire vector operation 

to a single result, such as the vector inner (or dot) product. The CRAY, lacking such instructions, 

must normally perform these operations in scalar mode, although vectorizable algorithms exist for long 

CRAY vectors. The Hitachi has the richest set of vector macro-instructions, with macro functional 

units to match. Both Fujitsu and Hitachi have single vector instructions or chains to extract the max­

imum and minimum elements of a vector, to sum the elements of a vector, to take the inner product of 

two vectors, and to convert vector elements between fixed point and floating point representations. To 

these, the Hitachi adds a vector product reduction, the DAXPY sequence common in linear algebra, 

and a vector iteration useful in finite-difference calculations. 

The only CRAY masked vector instructions are the vector compress/expand and conditional vec­

tor merge instructions; the CRAY Fortran compiler uses these instructions to vectorize loops with only 

a single IF statement. The CRAY can hold logical data for only a single vector register. Both 

Japanese computers, on the odier hand, have masked arithmetic instructions that permit straightforward 

vectorization of loops widi IF statements. The Fujitsu and Hitachi computers have mask register sets 

diat can hold logical data for every vector register element. These large mask register sets, and vector 

logical instructions to manipulate these masks, should make the Japanese machines strong candidates 

for logic programming. These machines can hold die results of many different logical operations in 

their multiple mask registers, eUminating the need to recompute masks diat are needed repeatedly, and 
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permitting the vectorization of loops with multiple, compound, and nested IF statements. 

3.7 Scalar Processing Performance 

Table S compares the scalar architectures of the three machines studied. 

All three computers permit scalar and vector instruction concurrency; CRAY permits concurrency 

among all its functional units. The Fujitsu and Hitachi computers are compatible with IBM System 

370; they implement the complete IBM 370 scalar instruction set and scalar register sets (Fujitsu added 

four additional floating-point registers). 

CRAY computers use multiple, fully-segmented functional units for both scalar and vector 

instruction execution, while Fujitsu and Hitachi use an unsegmented execution unit for all scalar 

instructions. CRAY computers can begin a scalar instruction on any clock cycle; more than one 

CRAY scalar instruction can be in execution at a given time, in the same and in different functional 

units. Fujitsu and Hitachi, on the other hand, perform their scalar instructions one at a time, many tak­

ing more than one cycle. Thus, even though many scalar instruction times are faster on the Fujitsu 

than on the CRAY, the CRAY will often have a higher scalar result rate because of concurrency. In 

our benchmark set, a single processor of the CRAY X-MP-4 outperformed both the Fujitsu VP-200 

and the Hitachi S-810/20 on all the programs that were dominated by scalar floating point instruction 

execution. 

The Fujitsu and Hitachi computers have larger and more powerful general-pur(>ose instruction 

sets than the CRAY, and more flexible dau formats for integer and character processing. Thus, appli­

cations that are predominately scalar and use litde floating-point arithmetic may well execute faster on 

these IBM-compatible computers than on a CRAY. We had no applications in our benchmark to 

measure such performance. 
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Table 5 

Scalar Architecture 

CRAY X-MP-4 Fujitsu VP-200 Hitachi S-810/20 

Scalar Cycle Time 

Scalar Registers: 

General/Addressing 

Floating Point 

Scalar Buffer Memory: 

Capacity 

Memory Bandwidth 

CPU Access Time 

CPU Transfer Rate 

Scalar Execution Times: 

Floating Point Mult. 

Floating Point Add 

Scalar Data Types: 

Floating Point 

Fixed Point 

Logical 

Decimal 

Character 

9.5 nsec 

8x24-bit 

8x64-bit 

T-Registers 

64 Words 

105 Mwords/sec 

1 CP - 9.5 nsec 

1 Word/9.5 nsec 

7 CP - 66.5 nsec 

6 CP - 57.0 nsec 

64-bit 

24; 64-bit 

64-bit 

None 

None 

15 nsec 

16x32-bit 

8x64-bit 

Cache Memory 

8192 Words 

266 Mwords/sec 

1 CP - 15 nsec 

2 Words/15 nsec 

3 CP - 45 nsec 

2 CP - 30 nsec 

32; 64; 128-bil 

16; 32-bit 

8; 32; 64-bit 

1 to 16-bytes 

1 to 4096-bytes 

28 nsec 

16x32-bil 

4x64-bit 

Cache Memory 

32768 Words 

112 Mwords/sec 

1 CP - 28 nsec 

2 Words/28 nsec 

3 CP - 84 nsec 

2 CP - 56 nsec 

32; 64; 128-bit 

16; 32-bit 

8; 32; 64-bit 

1 to 16-bytes 

1 to 4096-bytes 

4. Benchmark Environments 

We spent two days at Cray Research compiling and running the benchmark on the CRAY X-

MP-4. The CRAY programs were one-processor tests; no attempt was made to exploit the additional 

processors. 

For the Japanese benchmarkings, we sent ahead a preliminary tape of our benchmark source pro­

grams and some load modules produced at Argonne. At both Fujitsu and Hitachi the load modules ran 

without problem, demonstrating that the machines are in fact compatible with IBM computers on both 

instruction set and operating system interface levels. (Of course, these tests did not use die vector 

features of the machines.) 
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The VP-200 tests were run at the Fujitsu plant in Numazu, Japan, during a one-week period. We 

had as much lime on the VP-200 as needed. The front-end machine was a Fujitsu M-380 (approxi­

mately twice as fast as a single processor of an IBM 3081 K). 

The Hitachi S-810/20 tests were run at the Hitachi Kanagawa Works, during two afternoons. 

The Hitachi S-810/20 benchmark configuration had no front-end system. Instead, we compiled, linked, 

ran, and printed output directly on the machine. 

The physical environment of the Hitachi S-810/20 at Kanagawa is noteworthy. The machine 

room was not air-conditioned; a window was opened to cool off die area. The outside temperature 

exceeded 1(X) degrees Fahrenheit on the first day, and we estimate that the computer room temperature 

was well above 100 degrees, with high humidity; yet the computer ran without problem. 

5. Benchmark Codes and Results 

5.1 Codes 

We asked some of the major computer users at Argonne for typical Fortran programs diat would 

help in judging the performance of these vector machines. We gathered 20 programs, some simple 

kernels, others fiill production codes. The programs are itemized in Table 6. 

Four of the programs have very litde vectorizable Fortran (for the most part they are scalar pro­
grams): BANDED, NODALO, NODALl, SPARSESP. Bodi STRAWEXP and STRAWIMP have 
many calculations involving short vectors. For most of these programs the CRAY X-MP performed 
fastest, with the Fujitsu faster than the Hitachi. 

Below we describe some of the benchmarks and analyze the results. 

5.1.1 APW 

The APW program is a solid-state quantum mechanics electronic structure code. APW calculates 

self-consistent field wave functions and energy band structures for a sodium chloride lattice using an 

antisymmetrized plane wave basis set and a muffin-tin potential. The majority of loops in this program 

are short and are coded as IF loops rather than DO loops; they do not vectorize on any of die ben­

chmarked computers. The calculations are predominately scalar. 
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This program highlights die CRAY X-MP advantage when executing "quasi-vector" code 

(vector-like loops that do not vectorize for some reason). The CRAY executes scalar code on seg­

mented functional units and can achieve a higher degree of concurrency in scalar tiian either the Fujitsu 

or Hitachi machines, which execute scalar instructions one at a time. 

5.1.2 BIGMAIN 

BIGMAIN is a highly vectorized Monte Cario algorithm for computing Wilson line observables 

in SU(2) lattice gauge tiieory. This program has die longest vector lengths of the benchmarks. All the 

vectors begin on the same memory bank boundary, and all have a stride of twelve. The only 

significant nonvectorized code is an IF loop, which seriously limits die peak performance. 

The superior performance of the CRAY on BIGMAIN reflects both the CRAY'S insensitivity to 

the vector stride and its greater levels of concurrency when executing scalar loops. The Fujitsu perfor­

mance reflects a quartering of memory bandwidth when using a vector stride of twelve. The Hitachi 

performance reflects its slower scalar performance. 

5.1.3 BFAUCET and FFAUCET 

BFAUCET and FFAUCET compute the ground state energies of drops of liquid helium by the 

variational Monte Carlo method. The BFAUCET codes involve Bose statistics, and a table-lookup 

operation is an important component of the time. The FFAUCET cases use Fermi statistics and are 

dominated by the evaluation of determinants using LU decomposition. The different cases correspond 

to different sized drops, as shown in Table 7. 

BFAUCETl, 2, and 3 and FFAUCETl and 2 perform only a single Monte Carlo iteration each; 

these cases are typical of checkout runs and are dominated by non-repeated setup work. BFAUCET4, 

5, and 6 and FFAUCET3 are long production runs. 

5.1.4 LINPACK 

The LINPACK timing is dominated by memory reference as a result of array access dirough the 

calls to SAXPY. For this problem die vector length changes during the calculation from length 100 

down to length 1 (see Table 8). 

Fujitsu's and Hitachi's performance reflects the fact that diey do not do so well as die CRAY 
with short vectors. 
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Table 6 

Programs Used for Benchmarking 

Cod« Na of Unei Ocscnplion 

APW 1448 Solidsuie code, for anti symmdric plane wive calculations for solids. 

DANDU) 1S39 Band linear algebra equation solver, for parallel proceuors 

BIGMAIN 774 Vecton»d Monte Carlo algonthm. for SU(2) lattice gauge theory. 

DIF3D 527 1,2. and 3-D difTusion theory kernels. 

LATFERM3 1149 Statistical-mechanical approach to lattice gauge calculations. 

LATFERM4 1149 Statistical-mechanical approach to lattice gauge calculations. 

LATTICED 1149 Sutistical-mechanical approach to lallice gauge calculations. 

MGLXCDYN 1020 Molecular dynamics code simulating a fluid. 

NODALO 34$ Kernel of 3-D neutronici code using nodal method. 

NODALl 345 Kernel of 3-D neuironics code using nodal method. 

NODALX 345 Kernel of 3-D ncutronics code using nodal method. 

BFAUCET 5460 Variational Monte Carlo for dropc of He-4 atoms — Bose statistics. 

FFAIXTET 5577 Variational Monle Carlo for drops of ne-3 atoms — Fermi sUlistics. 

SPARSESP 1617 ICCG for non-flymmelric sparw matrices based on normal equations. 

SPARSE 1 3228 MA32 from the Harwell library sparse matrix code using fronul 

techniques and software run on a 64 x 64 problem. 

STRAWEXP 4806 2-D nonlinear explicit solution of finite element program with weakly 

coupled thennomechanical formutilion in addition to structural and 

fluid structural interaction capability. 

STRAWIMP 4806 Same as STRAWEXP but implicit solution. 
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Table 7 

Average Vector Length for BFAUCET and FFAUCET 

Case Average Vector Length 

BFAUCETl 

BFAUCET2 

BFAUCET3 

BFAUCET4 

BFAUCET5 

BFAUCET6 

FFAUCETl 

FFAUCET2 

FFAUCET3 

10 

35 

56 

120 

10 

35 

10 

17 

10 

Table 8 

LINPACK Timing for a Matrix of Order 100 

Machine MFLOPS Seconds 

CRAY X-MP 21 

Fujitsu VP-200 17 

Hitachi S-810/20 17 

.032 

.040 

,042 

5.1.5 LU, Cholesky Decomposition, and Matrix Multiply 

The LU, Cholesky decomposition, and matrix multiply benchmarks are based on matrix vector 

operations. As a result, memory reference is not a limiting factor since results are retained in vector 

registers during the operation. The technique used in these tests is based on vector unrolling [1], 

which works equally well on CRAY, Fujitsu, and Hitachi machines. 
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The routines used in Tables 9 through 11 have a very high percentage of tloating-p^iint arithmetic 

operations. The algorithms are all based on column accesses to the matrices. That is, the programs 

reference array elements sequentially down a column, not across a row. With the exception of matrix 

multiply, die vector lengths si.irt out as die order of the matrix and decrease during the course of the 

computation to a vector length of one. 

Table 9 

LU Decomposition Based on Matrix Vector Operations 

Order 

50 

100 

150 

200 

250 

300 

CRAY X-MP(1 CPU) 

24.5 

51.6 

72.1 

87.4 

99.2 

108.4 

Fuji itsu VP-200 

20.5 

51.8 

84.6 

117.1 

148.8 

178.8 

Hitachi S-810/20 

17.9 

47.5 

76.3 

102.2 

126.4 

147.8 

Table 10 
Cholesky Decomposition Based on Matrix Vector O(>erations 

Order 

50 

100 

150 

200 

250 

300 

CRAY X-MP(1 CPU) 

29.9 

65.6 

91.9 

107.7 

119.1 

132.3 

MFLOPS 

Fuji itsu VP-200 

25.8 

70.6 

117.6 

162.2 

202.2 

238.1 

Hitachi S-810/20 

18.8 

60.1 

104.9 

144.9 

179.7 

211.8 
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Table 11 

Matrix Multiply Based on Matrix Vector Operations 

Order 

50 

100 

150 

200 

250 

300 

CRAY X-MP (1 CPU) 

98.4 

135.7 

149.0 

156.2 

165.9 

167.9 

MFLOPS 

Fuj itsu VP-200 

112.9 

225.2 

328.1 

404.5 

462.2 

469.2 

Hitachi S-810/20 

100.0 

213.3 

279.3 

336.8 

366.7 

390.4 

For low-order problems the CRAY X-MP is slighdy faster tiian the VP-200 and S-810/20, 

because it has the smallest vector startup overhead (primarily due to faster memory access). As the 

order increases, and die calculations become saturated by longer vectors, the Fujitsu VP-200 attains the 

fastest overall execution rate. 

With matrix multiply, the vectors remain die same length throughout; here Fujitsu comes close to 

attaining its peak theoretical speed in Fortran. 

5.2 Results 

Table 12 contains the timing data for our benchmark codes. We also include the timing results 

on other machines for comparison. 

6. Fortran Compilers and Tools 

6.1 Fortran Compilers 

The three compilers tested exhibit several similarities. All three tested systems include a full For­

tran 77 vectorizing compiler as the primary programming language. The CRAY compiler includes 

most IBM and CDC Fortran extensions; the two Japanese compilers include all the IBM extensions to 

Fortran 77. All three compilers can generate vectorized code from standard Fortran; no expHcit vector 

syntax is provided. All three compilers recognize a variety of compiler directives — special Fortran 

comments that, when placed in a Fortran source code, aid the compiler in optimizing and vectorizing 

the generated code. Each compiler, in its options and compiler directives, provides users with a great 

deal of control over the optimization and vectorization of their programs. 
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Table 12 

Timing Data (in .seconds) for Various Computers (a) 

Program 

NanK 

APW 

BANDED 

BIGMAIN 

D I R D S l / l 

DinDS2/ l 

DIF3DV(V| 

DIF5DVI 1 

LATTERM3 

LJVTFERM4 

UVTTlCEg 

MOI^CDYN 

NODAU) 

NODALl 

NODEUC 

BFAtXrETl 

B F A l X X n 

B F A l X m 

BFAUCET4 

BFAIXXTS 

BFAIK:ET6 

FFAlXrETI 

FFAtX:ET2 

F F A U C m 

SPARSESP 

SPARSE! 

STRAWEXP 

STREWEXP2 

STRAWIMP 

CRAY X M P ^ 

using 1 prvK. 

e r r 1 13 

30.69 

24J 

10.86 

23.7 

19.0 

9J1 

9J7 

6.1 

121.8 

102 

8.68 

6.41 

6.45 

.25 

11J 

8.96 

10.6 

259.4 

787.4 

727J 

13.6 

44.4 

1144.0 

1200 

Z J l 

37J 

153.4 

1513 

Fujitsu 

Vp-200 

ni 

4038 

34.15 

: i 4 9 

20 J1 

2193 

16 37 

1639 

6.2 

65 J9 

534 

9.07 

14.31 

14 47 

.14 

16.13 

11.66 

18 48 

551.2 

923.04 

823.98 

19.45 

4231 

1691.83 

1361 

6.74 

45.74 

179.37 

15131 

lliuchi 

S810/20 

f77 

54 37 

38 1 

34 36 

21.9 

21.9 

11.8 

111 

6.6 

653 

6.7 

1578 

20.1 

198 

.20 

1264.29 

9.85 

59.2 

231.13 

172.61 

lliuchi(b) 

S810^0 

PORTVS 

(scalar) 

41 0 

451 

47.4 

50.1 

49.3 

158 

345 2 

16 

16 6 

193 

19.3 

22.9 

23.9 

38.7 

14.26 

MiU(.hi{b) 

S810r20 

II EXT 

(scalar) 

157.66 

39.2 

413 

393 

38.7 

333 

820.6 

194 

172 

197 

19 5 

1.14 

22.8 

24.2 

389 

621.0 

1529.4 

26.7 

114 3 

273.9 

7 

IBM 

370 1*>5 

11 EXT 

74 82 

81 27 

73 

74 

36.26 

28.36 

2738 

1.45 

116.28 

382.73 

m M 

3033 

FORrvs 

171 

102 65 

151.81 

157 44 

168 

167 

52 07 

46 38 

5144 

4533 

4535 

157 

74 

79 

130 

2100 

94 

419 

33.06 

143.35 

38131 

IBM 

3033 

I I EXT 

1342 

142. 

138 

137 

87.8 

538 

51.74 

453 

45. 

73 

78 

128 

2048 

82 

397 

142.28 

360.55 

Amdahl 

5860 

r 7 

62 

35 

62 

67 

73 

70 

18 

640 

17 

17 

27 

23 

31 

34 

405 

920 

2351 

2786 

35 

150 

2440 

1484 

26 

51 

216 

(a) Numbers in boldface denote "fastest" time for a given program. 

(b) From load modules created on an IBM machine. 
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The compilers differ primarily in the range of Fortran statements they can vectorize, the complex­

ity of the DO loops that they vectorize, and die quantity and quality of messages they provide the pro­

grammer about die success or failure of vectorization. 

All tiiree Fortran compilers have similar capabilities for vectorizing simple inner DO loops and 

DO loops with a single IF statement. The two Japanese compilers can also vectorize outer DO loops 

and loops with compound, multiple, and nested IF statements. The Fujitsu compiler has multiple stra­

tegies for vectorizing DO loops containing IF statements, based on compiler directive estimates of the 

IF statement true ratio. The Japanese compilers can vectorize loops tiiat contain a mix of vectorizable 

and non-vectorizable statements; the CRAY compiler requires the user to divide such code into 

separate vectorizable and non-vectorizable DO loops. 

The vector macro instructions (e.g., inner product, MAX/MIN, iteration) on the two Japanese 

computers permit their compilers to vectorize a wider range of Fortran statements than can the CRAY 

compiler. And, the Japanese compilers seem more successful at using information from outside a DO 

loop in determining whether that loop is vectorizable. 

All diree compilers, in their output listings, indicate which DO loops vectorized and which did 

not. The two Japanese compilers provide more detailed explanations of why a particular DO loop or 

statement does not vectorize. The Fujitsu compiler listing is the most effective of the three: in addition 

to the vectorization commentary, the Fujitsu compiler labels each DO statement in the source listing 

with a V if it vectorizes totally, an S if the loop compiles to scalar code, and an M if the loop is a mix 

of scalar and vector code. Each statement in the loop itself is similarly labeled. 

The Fujitsu and Hitachi compilers make all architectural features of their respective machines 

available from standard Fortran. As a measure of confidence in their compilers, Fujitsu has written all, 

and Hitachi nearly all, of their scientific subroutine libraries in standard Fortran. 

6,2 Fortran Tools 

Fujitsu and Hitachi provide Fortran source program analysis tools which aid the user in optimiz­

ing program performance. The Fujitsu interactive vectorizer is a powerful tool for both the novice and 

tiie experienced user; it allows one to tune a program despite an unfamiliarity witii vector machine 

architecture and programming practices. The interactive vectorizer (which runs on any IBM-

compatible system with MVS/TSO) displays the Fortran source widi each statement labeled with a V 

(vectorized), S (scalar), or M (partially vectorized), and a static estimate of die execution cost of die 

statement As the user interactively modifies a code, die vectorization labels and statement execution 

costs are updated on-screen. The vectorizer gives detailed explanations for failure to vectorize a state­

ment, suggests alternative codings that will vectorize, and inserts compiler directives into die source 

based on user responses to die vectorizer's queries. Statement execution cost analyses are based on 

assumed DO loop iteration counts and IF statement true ratios. The user can run the FORTUNE exe­

cution analyzer to gather run-time statistics for a program, which can then be input to the interactive 

vectorizer to provide a more accurate dynamic statement execution cost analysis. 
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The Hitachi VECTIZER runs in batch mode; it provides additional information much like die 

Hitachi Fortran compiler's vectorization messages. 

7. Conclusions 

The results of our benchmark show die CRAY X-MP-4 to be a coasisicntly strong performer 

across a wide range of problems. The CRAY was particularly fast on programs dominated by scalar 

calculations and short vectors. The fast CRAY memory contributes to low vector startup times, lead­

ing to its exceptional short-vector performance. The CRAY scalar performance derives from its seg­

mented functional units; the X-MP achieves enough concurrency in many scalar loops to outperform 

the Japanese machines, even though individual scalar arithmetic instruction times are about twice as 

long on the CRAY as on the Fujitsu. 

The Fujitsu and Hitachi computers perform faster than die CRAY for highly vectorizable pro­

grams, especially those widi long (>50) vector lengths. The Fujitsu VP achieved the most dramatic 

peak performance in the benchmark, outperforming a single CRAY X-MP processor by factors of two 

to three on matrix-vector algorithms, with die Hitachi not far behind. Over the life cycle of a program, 

the Fujitsu and Hitachi machines should benefit relatively more than the CRAY from tuning that 

increases the degree of program vectorizadon. 

The CRAY has I/O weaknesses that were not probed in this exercise. With an SSD, the CRAY 

has the highest I/O bandwidth of the three machines. However, owing to severe limits on the number 

of disk I/O paths and disk devices, the total CRAY disk storage capacity and aggregate disk I/O 

bandwidth fall far below that of the two Japanese machines. The CRAY is forced to depend on a 

front-end machine's mass storage system to manage the large quantities of disk data created and con­

sumed by such a high-performance machine. 

Several weaknesses were evident in the Fujitsu VP in this benchmark. The Fujitsu memory per­

formance degrades seriously for nonconsecutive vectors. This was particularly evident in the BIG-

MAIN, DIF3D, and FAUCET benchmark programs. Even-number vector strides reduce the Fujitsu 

memory bandwidth by 75%, and a stride proportional to the number of memory banks (stride-n*128) 

reduces the memory bandwidth about 94%. This results in poor performance for vectorized Fortran 

COMPLEX aridimetic (stride-2). Fujitsu users will profit by reprogramming their complex aridimetic 

using only REAL arrays, and by ensuring that multidimensional-array algorithms are vectorized by 

column (stride-1) rather than by row. 

Fujitsu's vector performance is substantially improved if a program's maximum vector lengths 

are evident at compile time, whedier from explicit DO loop bounds, array dimension statements, or 

compiler directives. For example, die order-100 LINPACK benchmark improves by 12% to 19 

MFLOPS, and die order-300 matrix-vector LU benchmark improves by 23% to 220 MFLOPS, when a 

Fujitsu compiler directive is included to specify die maximum vector length (numbers from die LIN­

PACK benchmark paper [2J). When maximum vector lengdis are known, the Fujitsu compiler can 

optimize die numbers and lengdis of die vector registers and frequentiy avoid the logic diat divides 

vectors into segments no larger than the vector registers. Fujitsu's short-loop performance, not strong 
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to begin with, is particularly degraded by unnecessary vector segmentation ("stripmining") logic. None 

of \he benchmark problems had explicit vector lengtii information. 

In many ways, the Hitachi computer seems to have the greatest vector potential. Despite its 

slower memory technology, the Hitachi has the highest single processor memory bandwidth, owing to 

its four memory pipes. Also, Hitachi has the most powerful vector macro instruction set and the most 

flexible set of arithmetic pipelines; in addition, the Hitachi is die ordy computer able to process vectors 

longer than its vector registers, entirely in hardware. The vectorizing Fortran compiler is impressive, 

although the compiler is rarely able to exploit fully the potential concurrency of the arithmetic pipe­

lines. The Hitachi performs best on the benchmarks witii litde scalar content; its slow scalar perfor­

mance — about half that of the Fujitsu computer — burdens its performance on every problem. 

At present die Japanese Fortran compilers are superior to the CRAY compiler at vectorization. 

Advanced Fujitsu and Hitachi hardware features provide opportunities for vectorization that are una­

vailable on the CRAY. For example, the Japanese machines have macro instructions to vectorize dot 

products, simple recurrences, and the search for the maximum and minimum elements of an array; and 

they have multiple mask registers to allow vectorization of loops with nested IF statements. Thus, a 

wider range of algorithms can vectorize on the Japanese computers than can vectorize on the CRAY. 

Also, the Japanese compilers provide the user with more useful information about the success and 

failure of vectorization. Moreover, there is no CRAY equivalent to the Fujitsu interactive vectorizer 

and FORTUNE performance analyzer. These advanced hardware features and vectorizing tools will 

make it easier to tune programs for optimum performance on the Japanese computers than on the 

CRAY. 

The CRAY X-MP and the Japanese computers require different tuning strategies. The CRAY 

compiler does not partially vectorize loops. Therefore, CRAY users typically break up loops into tiieir 

vectorizable and nonvectorizable parts. The Japanese compilers, however, automatically segment loops 

into their vectorizable and nonvectorizable parts. 
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Appendix A: VECTOR Program 

Below is the program VECTOR, used to check out the compiler's ability to vectorize i-onran 
code. 

VECTOR is not a particularly difficult benchmark for vectorizing compilers, but there are a 
number of tricky loops and the program that will identify poor vector compilers. Each loop is 
designed to test the ability of the compiler to detect a single opportunity for vectorization. By no 
means is it intended to be an exhaustive test. 

C PROGRAM VECTdNPirr.OUTPirr) 
INTEGER tjOOP. PRTINC 

C 

REAL START. MAXNLM, MINFRC 
C 

IKTECER NOl. N02, N03. N04, N05. N06. N07, N08. N09. NIO, 
Nil. NI2, NI3. N14. N15. N16, N17 

C 

LOGICAL ADD. SUB, MLn.T. DIV 
C 

INTEGER SIZEOl. SIZE02. SIZE03. S1ZE04. SIZE05. 
SIZE06, SIZE07, SIZE08. SIZE09. SIZEIO, 
SIZEll. SIZE12. S1ZE13, S1ZE14. SIZEI5. 
SIZE16. SIZE17. SIZE99 

C 

INTEGER SZ16SQ. SZ17SQ 
C 

C ALL PARi^ETER STATEMENTS FOLLOW 
C 
C 
C 
C THE FOLLOWING PAR>^1ETER. LOOP. CONTROLS THE NIKBER OF TIMES 
C THE MAJOR LOOP IS EXECUTED. ONE EXECimON OF THE MAJOR LOOP 
C CAUSES ALL OF THE 17 MINOR LOOPS TO BE EXEOTTED ONCE 
C 

PARAKCTER ( LOOP - 1 0 0 0 0 ) 
C 
C THE FOLLCWNO PARAMETER. PRTINC, CONTROLS THE AMDUNT OF OUTPUT 

C 

C 

C 

PARANETER ( PRTINC - 10 ) 

PARAKETER ( START - I .01 . MAXNI>1 - I E50. MINFRC - I ./MAXNIM ) 

PARAMETER ( ADD - . TRUE . SUB - FALSE . 
MULT - TRUE.. DIV . .FALSE. ) 

C 
c 
C THE FOLLCWNG SIZE PARAMETERS MAY BE FREELY CHANGED BY THE USER 
C IT MAY BE DESIRABLE TO HAVE A MIXTURE OF LARGE AND SMALL ARRAYS 
C 
C ALL MATRICES ARE SQUARE AND THE SIZE PARAMETER IS THE NLMBER OF 
C ROWS (OR COLLKMS) IN THE MATRIX. NOT THE TOTAL Nli^ER OF ELEMENTS 
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THE CCMPLTTATION SIZE*SIZE TO DETERMINE THE NLMBER OF ELEMENTS 
MATRICES ARE USED IN LOOPS 16 (SIZE16) AND 17 (SIZE17). 

PARAMETER 
SIZEOl •• 
SIZE03 
SIZE05 
SIZE07 
SIZE09 
SIZEl1 
SIZE13 
SIZE15 
SIZE17 

100 
100 

1000 
1000 
1000 
1000 
1000 
1000 
100 

SIZE02 
SIZE04 
SIZE06 
SIZE08 
SIZEIO 
SIZE12 
SIZE14 
SIZE16 

1000 
6000 
1000 
1000 
1000 
4000 
1000 
100. 

PARAMETER ( 
SZ16SQ = SIZE16*SIZE16 SZ17SQ = S1ZE17*SIZE17 ) 

THE SIZE OF THE '99' ARRAYS IS DEFINED TO BE THE LARGEST SIZE 
OF ALL THE SINGLE DIMENSION ARRAYS. 

PARAMETER ( SIZE99 = SIZE04 ) 

THE LOOP MAXIMUMS ARE DEFINED TO BE THE SIZE OF THE ARRAY 
'$ 

THAT ARE USED IN THE LOOP. 

PARAMETER ( 
NOl 
NO 3 
NO 5 
NOT 
NO 9 
Nil 
N13 
N15 
N17 

SIZEOl 
SIZE03 
SIZE05 
SIZE07 
SIZE09 
SIZEll 
SIZE13 
SIZE15 
SIZE17 

NO 2 
NO 4 
NO 6 
NO 8 
NIO 
N12 
N14 
N16 

SIZE02 
SIZE04 
SIZE06 
SIZE08 
SIZEIO 
SIZE12 
SIZE14 
SIZE16 

THE REAL ARRAY DECLARATION STATEMENTS FOLLOW 

REAL VOIA(SIZEOI) 
V03A(SIZE03) 
V07A(SIZE07) 
VIOA(SIZEIO) 
V12C(SIZE12) 
V15A(SIZE15) 

REAL V99A(SIZE99) 
REAL M16A(SIZE16,SIZE16) 

M17A(SIZE17,SIZE17) 

VOIB(SIZEOI), V02A(SIZE02) 
V04A(SIZE04), V05A(SIZE05) 
V08A(SIZE08), V08B(SIZE08) 
VI1A(SIZE11), V12A(SIZE12) 
V13A(SIZE13), V13B(SIZE13) 

V99B(SIZE99), V99C(SIZE99) 
M16B(SIZE16,SIZE16) 

V02B(SIZE02) 
V06A(SIZE06) 
V09A(SIZE09) 
V12B(SIZE12) 
V14A(SIZE14) 

EACH INTEGER ARRAY IS USED AS AN INDEX INTO A REAL ARRAY. 
ARRAY I<NAME> IS USED AS AN INDEX INTO ARRAY V<NAME> . 
THEREFORE. THE SIZE OF ARRAY I<NAME> IS MADE THE SAME 
AS ARRAY V<NAME>. 

INTEGER I15A(SIZE15), I99A(SIZE99), I99B(SIZE99), I99C(SIZE9 9) 
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ALL SCALAR VARIABLES ARE DECLARED 

REAL S. T. X 
INTEGER I. J. K, M. INDEX 

LOGICAL OPOl. OP02. OP03. OP08, 0P12, OP13. OPI6. OP17 

c 

c 
c 
c 
c 

c 
c 
c 
c 

INITIALIZE 

DATA 
VOIA 
V02A 
V03A 
V05A 
V07A 
V08B 
VIOA 
V12A 
V12C 
V13B 
V15A 
V99A 
V99C 
M16A 
M17A 

: ALL VARIABLES 

/SIZEOl * 
/SIZEO: * 
/SIZE03 * 
/S1ZE05 ' 
/SIZE07 ' 

/SIZE08 < 
/SIZEIO ' 
/SIZEI2 • 
/SIZE12 " 
/S1ZE13 • 
/SIZE15 ' 
/SIZE99 ' 
/SIZE99 • 
/SZ16SQ < 
/SZI7SQ * 

* START/, 
' START/, 
* START/. 
* START/, 
• START/. 
* START/, 
' START/, 
* START/, 
* START/. 
* START/, 
' START/, 
* START/. 
' START/. 
' START/, 
* START/ 

VOIB 
V02B 
V04A 
V06A 
V08A 
V09A 
VllA 
VI2B 
VI3A 
VI4A 

V99B 

MI6B 

/SIZEOl 
/SIZE02 
/SIZE04 
/SIZE06 
/S1ZE08 
/SIZE09 
/SIZEll 
/SIZEI2 
/SIZE13 
/SIZE14 

/SIZE99 

/SZ16SQ 

• START/. 
• START/. 
• START/. 
• START/. 
• START/. 
• START/. 
• START/. 
• START/, 
• START/. 
• START/, 

• START/. 

• START/. 

INITIALIZE THE STARTING M3DE OF THE OPERATORS FOR THOSE LO 
THAT ALTERNATE BETWEEN ADD/SiraTRACT OR MULT I PLY/DIV IDE 

OPOl . 
OP02 -
OP03 -
OP08 -
OP12 . 
OP13 -
OP16 -
OP17 . 

INITIALIZE 
WIT rniN THE 

ADD 
ADD 
MULT 
ADD 
ADD 
MULT 
ADD 
MULT 

: THE INTE 
. PROPER F 

•GER ARRAYS TO 
lANCE. 

'RANDCM' VALUES THAT ARE 

DO 1 I-l,SIZEI5 
I15A(I) - I 

CONTINUE 
DO 2 I-l.SIZE99 

I99A(I) - SIZE99.Ut 
CONTINUE 
DO 3 I-l,SIZE99 

I99B(1) - I 
CONTINUE 
DO 4 I-1.SIZE99 

I99C(I) . MAX(199A(I),I99B(I)) 
CONTINUE 

BEGIN THE EXECUTION OF THE LOOPS 

DO 1000 INDEX-1.LOOP 

STAT^iENTS IN WRONG ORDER 
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IF (ABS(V01A(2)) .GT.MAXNUM) OPOl = .NOT. OPOl 
IF (OPOl.EQV.ADD) THEN 
DO 10 1=2,NOl 

VOIB(I) = VOlA(I-l) 
VOIA(I) = V01A(I)+V99A(I) 

10 CONTINUE 
ELSE 
DO 11 1=2,NOl 

VOIB(I) = VOlA(I-l) 
VOIA(I) = V01A(I)-V99A(I) 

11 CONTINUE 
ENDIF 

C 
C DEPENDENCY NEEDING TEMPORARY 
C 

IF (ABS(V02B(2)).GT.MAXNUM) OP02 = .NOT.OP02 
IF (OP02.EQV.ADD) THEN 
DO 20 1=1,N02-1 

V02A(I) = V99A(I) 
V02B(I) = V02B(I)+V02A(I+1) 

20 CONTINUE 
ELSE 
DO 21 1=1,N02-1 

V02A(I) = V99A(I) 
V02B(I) = V02B(I)-V02A(I+1) 

21 CONTINUE 
ENDIF 

C 
C LOOP WITH UNNECESSARY SCALAR STORE 
C 

IF (ABS(V03A(2)) .GT.MAXNUM .OR. 
ABS(V03A(2)).LT.MINFRC) OP03 = .NOT.OP03 

IF (OP03.EQV.MULT) THEN 
DO 30 1=1,NOB 

X = V99A(I) 
V03A(I) = V03A(I)*(X+V99B(I)) 

30 CONTINUE 
ELSE 
DO 31 1 = 1 ,N03 

X = V99A(I) 
V03A(I) = V03A(I)/(X+V99B(I)) 

31 CONTINUE 
ENDIF 

C 
C LOOP WITH AMBIGUOUS SCALAR TEMPORARY 
C 

T = 0. 
DO 40 1=1,N04 

S = V99A(I)*V99B(I) 
V04A(I) = S+T 
T = S 

40 CONTINUE 
C 
C LOOP WITH SUBSCRIPT THAT MAY SEEM AMBIGUOUS 
C 

DO 50 1=1,N05/2 
V05A(I) = V05A(I+N05/2) 

50 CONTINUE 
C 
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C RECURSIVE LOOP THAT REALLY ISN'T 
C 

DO 60 I-1.N06-2.2 
V 0 6 A ( U I ) • V06A(1)*4 

60 CONTINUE 
C 

C LOOP WITH POSSIBLE ANUIGUITY BECAUSE OF SCALAR STORE 
C 

DO 70 I-l.N07-I 
J - U l 
V07A(I) - V07A(J) 

70 CONTINUE 
C 
C LOOP THAT IS PARTIALLY RECURSIVE 
C 

IF (ABS(V08A(2)) GT MAXNLM) OP08 - .NOT.OP08 
IF (OP08 EQV ADD) THEN 

DO 80 I.2.N08 
V08A(I)+(V99A(I)»V99B(I)) 
V08B( I - I )<«>V08A( I )-*>V99B( I ) 

NO 8 
V08A(I)-(V99A(I)•V99B(I)) 
V08B(I - 1)4V08A(1)^V99B(I) 

STORES 

DO 90 I-l,N09 
V09A(I) - V99A(I)+V99B(I) 
V09A(I) - V99C(I)*V09A(I) 

90 CONTINUE 
C 
C LOOP WITH INDEPENDENT CONDITIONAL 
C 

T - I . 
DO 100 I-l.NIO 

IF (V99C(I).GE.T) THEN 
X - V99A(I)*V99B(I)43.1 
Y - V99A(I)+V99B(I)»2.9 
VIOA(I) - SQRT(X»*2»Y) 

ENDIF 
100 CONTINUE 
C 
C LOOP WITH NONOONTIGIXXJS ADDRESSING 

C 
DO I to I-l.Nil.2 

VIIA(I) - V99B(I)+3.*V99C(I) 
110 CONTINUE 
C 

C SIMPLE LOOP WITH DEPENDENT CONDITIONAL 

C 
IF (ABS(V12A(2)) OT MAXNIM) 0P12 - .N0T.0P12 
IF (ABS(V12B(2)).OT MAXNLM) OP12 - .N0T.0PI2 
IF (ABS(V12C(2)) GT.MAXNLM) OP12 - N0T.0P12 
IF (OP I 2. EQV. ADD) THEN 

DO 120 I-I.N12 

80 

81 

C 
C 
C 

V08A(I) 
V08B(1) 

CONTINUE 
ELSE 

DO 81 I. 
V08A(I) 
V08B(I) 

CONTINUE 
ENDIF 

LOOP WITH UNNEC 

m 

m 

-2 
-
• 

:E 
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V 1 2 A ( I ) = V 1 2 A ( I ) + V 9 9 B ( I ) + V 9 9 C ( I ) 
IF ( V 1 2 A ( I ) . L T . O . ) V 1 2 B ( I ) = V I 2 B ( I ) + V 9 9 A ( I ) + V 9 9 B ( I ) 
V 1 2 C ( I ) = V 1 2 C ( I ) + V 1 2 A ( I ) + V 9 9 A ( I ) 

120 CONTINUE 
ELSE 

DO 121 1=1.N12 
V12A(I) = V12A(I)-V99B(I)-V99C(I) 
IF (V12A(I)-EQ.O.) V12B(I) = VI2B(I)-V99A( I)-V99B(I) 
V12C(I) = V12C(I)-V12A(I)-V99A(I) 

121 CONTINUE 
ENDIF 

C 
C COMPLEX LOOP WITH DEPENDENT CONDITIONAL 

C 
IF (ABS (VI 3B(2)) .GT.MAXNUM .OR. 

ABS(V13B(2)).LT.MINFRC) OP13 = .N0T.0P13 
IF (OP 13.EQV.MULT) THEN 

DO 130 1 = 1 ,N13 
V13A(I) = V99A(I)+V99C(I) 
IF (V13A(I).EQ.O.) THEN 

V13B(I) = V13A(I)*V13B(I) 
ELSE 

V13A(I) = V99B(I)*V99C(I) 
V13B(I) = 1. 

ENDIF 
130 Ca^INUE 

ELSE 
DO 131 1=1,N13 

V13A(I) = V99A(I)-V99C(I) 
IF (V13A(I).EQ.O.) THEN 

V13B(I) = V13A(I)/V13B(I) 
ELSE 

V13A(I) = V99B(I)/100. 
V13B(I) = 1. 

ENDIF 
131 COfTINUE 

ENDIF 
C 
C LOOP WITH SINGULARITY HANDLING 
C 

DO 140 1=1,N14 
IF (V99B(I)-GT.O.) V14A(I) = V99B(I)/V99C(I) 

140 cosrriNUE 
C 
C LOOP WITH SIMPLE GATHER/SCATTER SUBSCRIPTING 
C 

DO 150 1=1,N15 
V15A(I15A(I)) = 

SQRT(V99A(I99A(I))*V9 9B(I99B(I))+V99C(I99C(I))**2+.5) 
150 CCX^mNUE 
C 
C LOOP WITH MULTIPLE DIMENSION RECURSION 
C 

IF (ABS(M16A(2,2)) .GT.MAXNLM) OP 1 6 = .N0T.0P16 
IF (OP 16.EQV.ADD) THEN 

DO 160 1=1,N16 
DO 160 1=2,N16 
M16A(I,J) = M16A(I.J-1)+M16B(I,J) 

160 CCNTINUE 
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161 

C 
C 
C 

ELSE 
DO 
DO 

161 
161 

MI6A(I 
CONTINUE 

ENDIF 

LOOP WITH 

1. 
J-
J) 

MULTIPLE 

1.N16 
2.NI6 
- MI6A(I .J 

DIMENSION 

•1) •MI6B( I 

AMBIGUOUS 

J) 

SUBSCRIPTS 

170 

171 

1000 

M - 1 
} - M 
K - M^l 

IF (ABS(M17A(2.2)).0T MAXNIM 
ABS(MI7A(2.2)).LT MINFRC) 

IF (OP 17. EQV MULT) THEN 
DO 170 1-2.NI7 
MI7A(1.J) . MI7A(I 

OR 
OPI7 . NOT.OPI7 

1-2 

CONTINUE 
ELSE 

DO 171 
M17A(I.J) 

CONTINUE 
ENDIF 
CONTINUE 
IF (PRTINC NEO) 
^MtITE(»,10001) 

(VOIAd 
(V02A(I 
(V03A(I 
(V05A(I 
(V07A(1 
(V08B(I 
(VlOAd 
(V12A(I 
(VI2C(I 
(V13B(I 
(V15A(I 

»RITE(».1000 
((M16A( 
((M16B( 
((MI7A( 

ENDIF 

N17 
M17A(I 

THEN 

I.K)*3 5 

I.K)/3.5 

I.SIZEOl.PRTINC) 
I.SIZE02.PRTINC) 
1.SIZE03,PRTINC) 
I.S1ZE05.PRTINC) 
1.SIZE07.PRTINC) 
1.SIZE07.PRTINC) 
I.SIZEIO.PRTINC) 
1.SIZE12,PRTINC) 
1.SIZE12.PRTINC) 
1.SIZE13.PRTINC) 
1.SIZE15.PRTINC) 
) 

.1-1,SIZEI6.PRTINC) 
) .1-1.SIZE16,PRTINC) 
),I-1.SIZE17.PRTINC) 

(VOIB(I) 
(V02B(I) 

(V06A(I) 
(V08A(I) 
(V09A(I) 
(VllA(I) 
(V12B(I) 
(VI3A(I) 
(VI4A(I) 

1.SIZEOl. 
1.SIZE02, 

1.SIZE06. 
1.SIZE07, 
I.SIZE09, 
1.SIZEl1. 
1,SIZE12. 
1.SIZE13, 
1.SIZE14. 

PRTINC). 
PRTINC). 

PRTINC). 
PRTINC), 
PRTINC). 
PRTINC). 
PRTINC). 
PRTINC), 
PRTINC), 

J.I.SIZEI6.PRTINC) 
J-I.SIZE16.PRTINC) 
J-I.SIZE 17.PRTINC) 

C FORMATS STATEMENTS FOLLOV 
C 
10001 FORMAT( *1 VALUES OF SINGLE DIMENSION ARRAYS FOLLOW'./ 

10002 FORMATS I VALUES OF DOUBLE DIMENSION ARRAYS FOLLCW' . / 

C 
STOP 
END 

(10E12.5)) 
(10E12.5)) 
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Appendix B: VECTOR Results 

Summarized in Table B-1 are the results from the program VECTOR. As the table indicates, two 

CRAY compilers were tested: CFT 1.13 and CFT 1.15. 

Table B-1 

Loops Missed by the Respective Compders 

Loop Label CRAY CRAY Fujitsu Hitachi 

CFT 1.13 CFT 1.15 77/VP vlOllO fort77/hap (v02-00) 

1 

2 

3 

4 

10,11 X X 

20,21 

30,31 

40 X X P P 

50 X X 

60 

70 X 

80, 81 X X P 

90 

100 

110 

120, 121 

130, 131 

140 

150 

160, 161 

170,171 X 

X - Loop not vectorized. 

P - Loop partially vectorized. 

Below we present die information provided by each compiler about the nonvectorized loops. 
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CRAY X-MP CFT 1.15 

The following loops were not v«clorUcd by the CRAY compiler. 

C 
C STATEMENIS IN WRONG ORDER 

C 

IF (ABS(V0IA(2)) GT.MAXNLM) OPOl - NOT.OPOl 

IF (OPOl EQV.ADD) THEN 

DO 10 1-2.NOl 

VOlB(l) - VOIAd- I) 

VOIAd) • VOIAd ) + V99A(l) 

10 CONTINUE 

ELSE 

DO I I I.2.NOl 

V0IB(I) . V0IA(I-1) 

VOIAd ) - V01A( I)-V99A(I ) 

11 CONTINUE 
ENDIF 

CompUtr message: 
DtpemUncy invotvuig array VOiA. 

Prtvtous mtnus wUh an uurementing subscript. 

C 

C LOOP WFTH AMBIGUOUS SCALAR TEMPORARY 
C 

T '0 
DO 40 lmJJ^04 

5 - V99A(l)*V99B(l) 
V04A(I) ̂  S*T 
T 'S 

40 CONTINUE 
Compiler message 
No message given. 

C 
C LOOP THAT IS PARTIALLY RECURSIVE 

C 

IF ( A B S ( V 0 8 A ( 2 ) ) GT MAXNIM) OP08 - .NOT.OP08 
IF (OP08.EQV.ADD) THEN 

DO 80 1 - 2 . N 0 8 
V 0 8 A d ) - V 0 8 A ( I ) + ( V 9 9 A d ) * V 9 9 B ( I ) ) 
V O S B d ) - V 0 8 B d - l ) + V 0 8 A ( I ) + V 9 9 B ( I ) 

80 CONTINUE 
ELSE 

DO 81 1 - 2 . N 0 8 
V 0 8 A ( I ) - V 0 8 A d ) - ( V 9 9 A d ) * V 9 9 B d ) ) 
V 0 8 B ( 1 ) - V 0 8 B d - l ) + V 0 8 A ( I ) + V 9 9 B d ) 

81 CONTINUE 
ENDIF 

Compiler message 

Dependency involving array V08B. 
Previous mtnus with an incrementing subscript. 

(Note thai partial vectorization takes place; there i& no hardware 

to allow recursion as in the Hitachi S-810. 
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Fujitsu 77/VP vlOllO 

The following loops were not vectorized by the Fujitsu compiler. 

C 
C LOOP WITH AMBIGUOUS SCALAR TEMPORARY 

C 
T = 0. 
DO 40 1 = 1 ,N04 

S = V99A(I)*V99B(I) 
V04A(I) = S+T 
T = S 

40 CONTINUE 
Compiler message: 
No message given for partial vectorization. 

C 
C LOOP WITH SUBSCRIPT THAT MAY SEEM AMBIGUOUS 
C 

DO 50 1=1.N05/2 
V05A(I) = V05A(I+N05/2) 

50 CC»^INUE 
Compiler message: 
Array V05A cannot be vectorized because recursive reference may take place. 

C 

C LOOP THAT IS PARTIALLY RECURSIVE 
C 

IF (ABS(V08A(2) ) .GT.MAXNUM) OP08 = .NOT.OP08 
IF (OP08.EQV.ADD) THEN 

DO 80 U 2 , N 0 8 

V 0 8 A ( I ) = V 0 8 A ( I ) + ( V 9 9 A ( I ) * V 9 9 B ( I ) ) 
V 0 8 B ( I ) = V 0 8 B ( I - l ) + V 0 8 A ( I ) + V 9 9 B d ) 

80 CONTINUE 
ELSE 
DO 81 U2.N08 

V08A(I) = V08A(I)-(V99A(I)*V99B(I)) 
V08B(I) = V08B(I-1)+V08A(I)+V99B(I) 

81 CCWriNUE 
ENDIF 

Compiler message: 

Some statements in this range cannot be vectorized since data dependency is 
recursive. 

(Note that partial vectorization takes place; there is no hardware 
to allow recursion as in the Hitachi S-810. 

C 

C LOOP WITH MULTIPLE DIMENSION AMBIGUOUS SUBSCRIPTS 
C 

M = 1 
J = M 
K = M+1 

IF (ABS(M17A(2,2)).GT.MAXNLM .OR. 

ABS (M17A(2, 2) ).LT.MINFRC) 0P17 = .N0T.0P17 
IF (OP 17.EQV.MULT) THEN 

DO 170 1=2,N17 

M17A(I,J) = M17A(I-1,K)*3.5 
170 CC^riNUE 
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ELSE 
DO 171 1-2.N17 

M 1 7 A d . J ) - M I 7 A ( | . I . K ) / 3 . 5 
171 CONTINUE 

ENDIF 
Compii^r message 

Variable K M subscript expression may cause recursive reference of array Mil A 
Variable J M subscript expressiom may cause recursive referttue of array M17A 
Relaitom bHween variables K and J may cause recursive reference 
Some siaiemenis m thu range cannot be vectortzed since the data dependency u recursive 

HlUcfal rort77/bap (v02-00) 

The followtng loops were not vectorized by the Hitachi compiler. 

C 
C LOOP WITH ANBIGIXX'S SCALAR TEMPORARY 
C 

T - 0 . 
DO 40 I - l ,N04 

S - V 9 9 A ( I ) » V 9 9 B ( I ) 
V04Ad) - S*T 
T - S 

40 CONTINUE 
Compder message 
DO LOOP 40 is partmHy vectonsable 
V04A(I) - 5*T. varuMe T used before d^niiion 

C 
C LOOP WITH SI;BSCRIPT THAT MAY SEEM AK©IGIXXJS 
C 

DO 50 1-1.NOS/2 
V 0 5 A ( I ) - V 0 5 A ( U N 0 5 / 2 ) 

50 CONTINUE 
Compiler message 
Unknown list vector data dapendemcy in variable V05A. 
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